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Abstract

We simulate the onset and evolution of the earliest splashing of an infinite cylindrical liquid

drop on a smooth dry solid surface. A tiny splash is observed to be emitted out of the rim of

the lamella in the early stage of the impact. We find that the onset time of the splash is pri-

marily dependent on the characteristic timescale, which is defined by the impact velocity as

well as the drop radius, with no strong dependence on either the liquid viscosity or surface

tension. Three regimes are found to be responsible for different splashing patterns. The out-

ermost ejected droplets keep extending radially at a uniform speed proportional to the

impact speed. Finally, we discuss the underlying mechanism which is responsible for the

occurrence of the initial drop splash in the study.

Introduction

The splashing dynamics of a liquid droplet upon a dry solid surface as an important and compli-

cated phenomenon has been accomplished by various scientists during the last decades. This phe-

nomenon plays a crucial role in various disciplines of nature and technological applications [1, 2],

e.g., interaction of raindrops with aircraft surfaces in rainfall [3] and icing [4] conditions, spray

combustion of liquid fuel [5], ink-jet printing [6], and surface painting and coating [7]. As to our

research of interest, i.e., effects of rainfall on aircraft aerodynamics [8, 9], there is an increasing

demand to deeply investigate the raindrop splashing dynamics during the interaction process of a

raindrop and a wing surface. As a liquid drop hits a solid surface, it often splashes and breaks up

into smaller secondary droplets. Splashing, including corona splashing and prompt splashing

[10], is a most singular phenomenon in the case of drop impact onto a dry solid surface, which is

still not fully understood due to the underlying instability in the breakup phase. Previous studies

[10–15] have found that corona splashing owes its existence to the presence of the ambient gas

since reducing gas pressure suppresses and even eliminates splashing entirely. These results are

motivating new studies on splashing dynamics [16–21].

Recently, Boelens, et al. have studied the pressure effect on splashing of an infinite cylinder

on a dry surface [22]. However, more researches are necessary to explain the splashing dynam-

ics and mechanisms for such shaped droplets. Here we examine the onset and evolution of the

splashing of an infinite cylindrical liquid drop on a smooth dry solid surface. Since we focus
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only on the influence of the liquid properties, rather than the air properties, on the dynamics

of the initial liquid drop splashing, the properties of the air remain constant. We use a two-

dimensional volume-of-fluid (VOF) code [23] to simulate the impact and splash. The VOF

methodology has been extensively applied as a robust approach to study drop impact related

issues [24–29]. In general, our results show that creation of secondary droplets is observed in

the early stages of spreading, and the splashes continuously evolve afterwards, moving for-

wards at an approximately uniform speed proportional to the impact speed and breaking up

into more tertiary droplets.

VOF model theory

In the present simulation, we include viscosity and surface tension and solve the Navier-Stokes

equations with the standard piecewise-linearly interpolated interface between the liquid and

the gas phases [23]. Both phases are constrained to incompressible media (S1 Fig). In the VOF

model, the N phases are considered as one effective fluid throughout the whole domain. Prop-

erties such as density ρ and viscosity μ of this effective fluid are defined as weighted average of

each of the N phases as follows,

r ¼
XN

i¼1

airi ð1Þ

m ¼
XN

i¼1

aimi ð2Þ

XN

i¼1

ai ¼ 1 ð3Þ

where n̂w and t̂ w are the unit vectors normal and tangential to the wall, respectively.

The tracking of the interface between the phases is accomplished by the solution of a conti-

nuity equation for the volume fraction of each phase, which has the following form:

1

ri

@

@t
ðairiÞ þ r � ðairi Ui

�!
Þ ¼

XN

j¼1

ð _mji � _mijÞ

" #

ð4Þ

where Ui
�!

is the velocity vector of phase i and _mij is the mass transfer from phase i to phase j.
The above volume fraction equation is solved through explicit time discretization with stan-

dard finite-difference interpolation schemes applied to the volume fraction values that were

computed at the previous time step, i.e.,

anþ1
i rnþ1

i � ani r
n
i

Dt
V þ

X

f

ðriU
n
f ani;f Þ ¼

XN
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" #

V ð5Þ

where n and n+1 denote indexes for previous time step and current time step, respectively. αi,f
is the ith volume fraction at face f, Uf is the volume flux through face f and V represents volume

of the cell.

Momentum balance is solved on a very fine square structured grid and the resulting velocity

field is shared among the phases. The momentum equation shown below is dependent on the
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volume fraction of all phases through the properties ρ and μ,

@

@t
ðrU!Þþr � ðrU!U!Þ ¼ � rP þr � ½mðrU!þrU!

T
Þ� þ r g!þ F! ð6Þ

where U! is the velocity vector of the effective fluid, P is the pressure, g! is the gravity accelera-

tion and F! is the body force.

The interface curvature and surface tension adopt the default method in FLUENT, i.e., the

interface curvature is calculated using a geometric reconstruction (piecewise-linear) scheme to

interpolate near the interface between the phases, as shown in the supplementary S2 Fig. A

wall adhesion angle in conjunction with the surface tension model is also adopted in the VOF

model. The contact angle that the fluid is assumed to make with the wall is used to adjust the

surface normal in cells near the wall. This so-called dynamic boundary condition results in the

adjustment of the curvature of the surface near the wall. If θw is the contact angle at the wall,

then the surface normal at the live cell next to the wall is

n̂ ¼ n̂wcosyw þ t̂ wsinyw ð7Þ

where n̂w and t̂ w are the unit vectors normal and tangential to the wall, respectively.

The entire system is enclosed in a rectangular domain which is over 20a (a represents the

radius of the liquid drop) long and 10a high, as shown in Fig 1 and the supplementary S3 Fig.

A cylindrical droplet is initially falling at a certain height above the substrate with an initial

velocity, Uini (grey shadow in Fig 1) so that the impact velocity equals U0 when contacting the

substrate (black solid in Fig 1). The four boundaries of the testing domain are set as no-slip

wall. We have carefully checked that the drop splashing behaviors are unaffected by changes in

the domain dimensions. Since neither the domain dimensions nor the air properties affect the

liquid dynamics reported here, the results rely only on two dimensionless parameters: the Rey-

nolds number Re� 2ρLU0a/μL and the Weber numberWe � 2ρLU02a/σ, where the symbols

will be explained in the later chapters.

Fig 1. Sketch of the flow domain adopted in this study.

https://doi.org/10.1371/journal.pone.0177390.g001
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Model accuracy validation

To validate the present numerical model in the capability of predicting drop splashing, we first

calculate the splash at different background air pressures for an ethanol drop hitting a dry

solid substrate at an impact velocity U0 = 3.74±0.02 m/s and compare the results for a spherical

droplet (colorful contours) experimentally conducted by Xu, et al. [11] and for an infinite

cylindrical droplet (monochrome photographs) via the present numerical method, as shown

in Fig 2A. The purpose for the comparison between our simulation and the experiment herein

is to compare the difference of splashing behavior between the two droplet shapes. It is clearly

seen that for both droplet shapes, the air pressure has an identical effect on the splashing char-

acteristics. For the cylindrical droplet at air pressure of 100 kPa, the sheet is pinched off and

breaks up into smaller droplets, causing a splash. However, as the air pressure is decreased to

17.2 kPa, the droplet stays attached to the substrate and no splashing occurs. All these phe-

nomena are consistent with what had been observed by Boelens, et al. [22]. Moreover, through

comparison, it is found in the same air pressure where splashing occurs, a spherical droplet

produces a much more intense splashing than an infinite cylindrical droplet. However, differ-

ence also significantly exhibits between the two splashing behaviors. For the spherical droplet,

a crown-like structure with lamella detachment is produced. While there is no evident lamella

detachment is observed for the infinite cylindrical droplet both here and in the study of Boe-

lens et al [22], which may be attributed to the substantial water surface tension in the longitu-

dinal direction that restrains the formation of lamella detachment. On the other hand, to

quantitatively validate the accuracy of the VOF model, we also calculate the splash characteris-

tics of a spherical water drop with radius of 1.7 mm after impacting a dry surface at velocity of

3.8 m/s and compare the results with the experimental data obtained by Stow and Hadfield

[30]. To better compare and analyze the outcomes from different impacts with a universal

standard, we nondimensionalize the length scales by drop radius a and the time scales by τ,
where τ� a/U0 is a characteristic falling time for the drop. The normalized radial trajectory of

Fig 2. Droplet impact characteristics. A 3.4±0.1 mm diameter ethanol liquid drop impacting a smooth dry substrate at U0 = 3.74±0.02 m/s

in the presence of different background air pressures. A. The experimental shapes for a spherical droplet [11] are in black color and the

predicted shapes for an infinite cylindrical droplet are in red. In the top and second rows, with the air pressure of 100 kPa, the drop splashes.

In the third and fourth rows, under air pressure of 17.2 kPa, there is no splashing at the periphery of the rim. B. Comparison of the radial

trajectory of the first ejected droplets impacting a dry solid surface obtained by the experiment and the current VOF prediction.

https://doi.org/10.1371/journal.pone.0177390.g002
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the first (outermost) ejected droplet, r/a, with respect to normalized time after first contact, t/τ,
is plotted in Fig 2B. Quantitatively, our predicted results agree much well with the experimen-

tal data and show an approximately linear relationship between the two axial variables.

Splashing dynamics results

Fig 3 presents the calculated the splashing behaviors for a liquid silicone oil drop of radius

a = 1.6 mm contacting a smooth dry substrate at impacting velocity U0 = 4 m/s (a mesh depen-

dence examination is conducted and the results are shown in S4 Fig). The density of the liquid

ρL = 940 kg/m3, as well as the dynamic viscosity μL = 9.4 cP and surface tension σ = 21 dynes/

cm. The gas phase, air, is kept at a pressure of 34 kPa for all simulations in the present study,

associated with the density ρg = 0.44 kg/m3 and dynamic viscosity μg = 0.018 cP. Thus, the

impact Re andWe correspond approximately to 1280 and 2292, respectively. A static contact

angle of 90˚ is used in all simulations. After contacting the wall [Fig 3A], the drop expands out-

wards in the radial direction with forward inertia [Fig 3B] and gradually forms a pancake-like

lamella with a thickened rim outward [Fig 3C]. Up to t = 7.4τ, the liquid sheet reaches its maxi-

mum radial extent for the first time [Fig 3F]. Meanwhile, we also observed a slight lamella

ejecta in the vicinity of the expanding rim at t = 0.6τ after the drop hits the solid substrate [Fig

3B], causing some tiny secondary droplets propagating much faster than the main lamella. The

onset of the splash observed here is well within the regime of the onset of various splashes with

the relation of Oh(Re)0.609 = 0.85 or Oh(Re)1.25 = 57.7 empirically fitted by Vander Wal et al.

[31] and Mundo et al. [32], respectively, where Oh =We1/2Re is the Ohnesorge number. The

breakups then extend far away from the rim [Fig 3C to 3E] and finally hit the side walls [Fig

3F].

In the rest of the study, we will examine how the onset of the splashing is controlled by the

kinematics of impact, i.e., the liquid properties, the radius and the impacting speed of the

drop. Although Xu et al. [11] proposed a relation for the onset of corona splash based on the

balance between the restraining pressure of the gas on the spreading liquid and surface

Fig 3. Droplet volume fraction during an impact. Volume fraction contours for a viscous silicone oil drop with diameter of 1.6 mm

impacting at 4 m/s onto a smooth dry solid surface under the surrounding pressure of 34 kPa. The successive times are t = 0, 0.6τ, τ, 2τ, 3τ
and 7.4τwhere τ� a/U0 is the characteristic time of impact, as listed in order from A to F.

https://doi.org/10.1371/journal.pone.0177390.g003
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tension, expressed by
X

G=
X

L ¼
ffiffiffiffiffiffiffiffiffi
gMG
p

P
ffiffiffiffiffiffiffi
aU0

2kBT

q ffiffiffiffiffiffiffiffi
mL=rL

p

s
, where

X

G and
X

L are the desta-

bilizing stress from gas and the stabilizing stress from surface tension, respectively.γ is the

adiabatic constant of the gas,MG is the gas molecular weight, P is the gas pressure, T is the tem-

perature and kB is the Boltzmann constant. This stress balance shows that the onset of corona

splash is essentially affected and can be controlled by the gas pressure. However, it does not tell

us when the splashing first emerges. Nor does it depict the temporal and spatial evolution of

the splashing structures. Finally, we will present a plot of the spatial patterns and temporal evo-

lution of the splashing and give a comprehensive understanding of the phenomenon.

To track the local evolution of the drop, we adopt a reference frame where the radial axis r is

along the lamella spreading direction, the vertical axis z is along the drop centerline, and the ori-

ginO is fixed on the substrate [Fig 4A]. We then plot the calculated drop shape profiles within the

reference frame from the instant the drop contacts the wall to that the earliest splashing emerges

[Fig 4A]. After contact, the no-flux condition at the wall causes the liquid previously falling

Fig 4. Time evolution of the lamella until splashing emerges. A. Shape evolution for the impact at speed

U0 = 8 m/s and the liquid dynamic viscosity μL = 40 cP. The other parameters are the same as that for Fig 3. B.

Onset time for the splash tonset as a function of Re (solid symbols) and We (open symbols), as the drop radius

is fixed at a = 1.6 mm. To make the two relationships plotted in one figure, the horizontal axis is 10 times

reduced for We. The different colors correspond to different liquid dynamic viscosity μL = 9.4 to 40 cP and

surface tension σ = 10 to 80 dynes/cm. The inset plots tonset vs drop radius at the same impact condition as

that for Fig 3 except that U0 = 10 m/s.

https://doi.org/10.1371/journal.pone.0177390.g004
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downward to be diverted into a radially expanding flow. This expanding flow speeds up as it

moves away from the centerline. At t = 0.2τ, a thin collar is found to be ejected from the bottom

of the drop. As time goes on, the surface tension slows the edge of the expanding liquid sheet, trig-

gering liquid to accumulate into a round rim. This trend is consistent with the results from previ-

ous studies [26, 33, 34]. The rim continues to expand followed by the main part of the lamella

spreading slower. By t = 0.58τ, the outermost rim separates from the lamella in order to balance

the excessive energy (We = 9168 in this case) which cannot be digested in a single mass merely by

drop deformation or viscous dissipation during the drop-wall interactions. Since secondary drop-

lets are emitted out of the rim, for the brevity of description we uniformly treat this rim separation

(i.e., lamella breakup) as the onset of splashing of interest in this study, though the breakup is rela-

tively gentle in the early stage of the drop-wall impact.

From the simulation, we can quantify the dynamics by associating the first appearance of

splashing with an onset time tonset. Fig 4B plots tonset nondimensionalized by the characteristic

impact time τ = a/U0 as a function of the drop radius and the impact parameters. From the inset

in Fig 4B we can see that the normalized tonset decreases rapidly with the increasing radius awhen

the drop is relatively small. Within the range of 0.85 to a maximum of 4 mm in this study, the

normalized tonset shows very little change as a is increased, whose value is fixed at tonset/τ = 0.6

(±0.1). Thus, to reduce the complication of the issue, we fix the drop radius at a = 1.6 mm for the

subsequent explorations. The main panel of Fig 4B presents essentially flat curves of tonset with

respect to both Re andWe, which suggests that the dimensional tonset is predominantly controlled

by the characteristic impact time, i.e., the drop size and impact speed, with no strong dependence

on either the liquid viscosity or surface tension.

Finally, we are going to delineate the features of the splashing from the temporal and spatial evo-

lution of the liquid volume fraction field. Three regimes are observed to be responsible for different

splashing patterns, which is closely related to Re, as shown in Fig 5A. In RegimeⅠ(Re = 602 to 903 in

Fig 5. Temporal and spatial evolution of drop splashing in the early stages of impact. A. Three regimes are found to be responsible

for the different splashing features shown at the successive times t = tonset, τ, 1.5τ and 3τ. B. Normalized radial distance of the outermost

ejected droplet as a function of normalized time at different Re (solid symbols, Re = 602 to 3840) and We (open symbols, We = 1354 to

30082). Different symbol shapes denote different values for Re or We. The inset plots the dimensional radial speed of the outermost

ejected droplets Ue vs the drop impact speed U0. The unit for both the speeds is m/s.

https://doi.org/10.1371/journal.pone.0177390.g005
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our simulation), an approximately spherical secondary droplet is emitted out of the rim while the

remaining portion of the lamella keeps contacting the wall and spreading outwards. In Regi-

meⅡ(Re = 1003 to 1505), a larger irregular liquid parcel is ejected from the lamella. In RegimeⅢ
(Re = 1806 to 3840), we see an occurrence of RegimeⅠand RegimeⅡ, accompanied with a spherical

secondary droplet ejected out first, while the air is still trapped resulting in a thin air film between

the liquid and the wall. After a while, the air destabilizes and breaks up the lamella, causing more

secondary droplets moving downstream. For all the three regimes, the ejected droplets extend out-

wards a very short distance outside the body of the drop and break up into more tertiary droplets.

We also plot the normalized radial distance of the outermost ejected droplet with relation-

ship to the normalized time in the early stages of splashing [Fig 5B]. It is confirmed that for

small t/τ, the first ejected droplets are not overtaken by droplets released later, so that the verti-

cal axis indicates the trajectory of the first ejected droplets. The incipient splash becomes visi-

ble at t� 0.6τ and r� 2.5a, verifying that the normalized displacement is independent of the

initial conditions for impact [30]. On the other hand, over the range of time of interest, the dis-

placement of the outermost ejecta shows a straight line with nearly an identical gradient of

2.65 and 2.75 (by fitting the data in Fig 5B) respectively for different Re andWe, implying that

the dimensional radial speed of the outermost ejected droplets, Ue, has a proportional relation-

ship only to the impact velocity U0, as is apparently indicated in the inset of Fig 5B.

Splashing mechanism

In this section, we give our physical understanding of the mechanism for destabilizing the sys-

tem and causing the occurrence of a splash on a smooth surface. This splashing of RegimeⅠcan

be explained by the combining influences of the touchdown of the liquid and the air entrap-

ment between the liquid and the substrate. Once contact occurs, a viscous liquid boundary

layer is developed near the contact region [17], as shown in the left-column images in Fig 6.

The viscous drag imparts the horizontal flow of the liquid an abrupt resistance and decelerates

the liquid in contact with the substrate. To conserve the total flux of volume, the horizontal

flow must be diverted away from the surface, i.e., the viscous boundary layer obtains a vertical

velocity component normal to the substrate. The normal velocity directs the individual fluid

parcels away from the wall. As time goes on, the diverted flow enters the new formed lamella,

causing the lamella to take off from the wall and form a splash. As Re is increased to be within

RegimeⅡ, due to the relatively large horizontal velocity plotted in the inset of Fig 5B, the

lamella moves more rapidly in the horizontal direction than in the vertical direction. On the

other hand, a cavity emerges at the edge of the spreading drop in RegimeⅡ, as shown in the

right-column images in Fig 6. The airflow in the cavity “cushions” the impact and destabilizes

the lamella [13], producing a bulk of lamella breakup rather than the regular spherical liquid

parcel in RegimeⅠ. The combined action of the above two factors in Regime Ⅰ and Regime Ⅱ
causes the splashing pattern in Regime Ⅲ. Finally, it should be noted that though the central

air film is always present upon the initial contact between the drop and the substrate, we found

no significant air film beneath the spreading drop at the time of sheet ejection in our simula-

tion as well as in other experiments [13]. Therefore, the splashing mechanism in Regime is

attributed to the air flow at the edge of the spreading drop rather than the central air film,

which is consistent with previous splash experiments [11, 13].

Conclusion

In conclusion, we have primarily studied the onset and evolution of the corona splashing of an

infinite cylindrical liquid drop impacting a smooth dry solid surface and found that the onset

time for the earliest splashing is primarily dependent on the impact time, i.e., the drop radius
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and impact speed, while the radial speed of the outermost ejected droplet is uniform at all times,

whose value is only proportional to the impact speed. The flow deflection in the viscous liquid

boundary layer and the air entrapped between the liquid and the substrate can explain the

occurrence of the splashing. Our results are of vital importance in studying the behavior of

supercooled large droplet (SLD) impinging on airfoils in aviation meteorology and other areas.
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S1 Fig. Air velocity contours at the instants of interest for drop impact speed of 12 m/s.
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Fig 6. Splashing mechanism. A schematic summarizing the postulated mechanisms for the initial drop splash in

RegimeⅠ(left) and RegimeⅡ(right). Shown on the left is a sequence of volume fraction contours starting from the

instant the air film ruptures or otherwise allows contact, while on the right is a sequence starting from an instant the

lamella shows significant upward deflections but has not been broken up.
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